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Fluctuation-response relation of many Brownian particles under nonequilibrium conditions
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We study many interacting Brownian particles under a tilted periodic potential. We numerically measure the
linear response coefficient of the density field by applying a slowly varying potential transversal to the tilted
direction. In equilibrium cases, the linear response coefficient is related to the intensity of density fluctuations
in a universal manner, which is called a fluctuation-response relation. We then report numerical evidence that
this relation holds even in nonequilibrium cases. This result suggests that Einstein’s formula on density
fluctuations can be extended to driven diffusive systems when the slowly varying potential is applied in a

direction transversal to the driving force.
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I. INTRODUCTION

The construction of statistical mechanics applicable to
nonequilibrium systems has been attempted for a long time.
However, even in nonequilibrium steady states, no general
framework is known, except for the linear response theory
[1]. For example, a useful form of the steady state distribu-
tion function has not been determined in systems far from
equilibrium.

In order to consider a strategy for investigating the statis-
tical mechanics of nonequilibrium steady states, let us recall
the justification of equilibrium statistical mechanics. The
equilibrium statistical mechanics leads to Einstein’s formula
on macroscopic fluctuations, which relates a large deviation
functional of macroscopic fluctuations with a thermody-
namic function. Since the validity of this formula can be
checked by measuring the fluctuations of macroscopic quan-
tities, we expect that its examination in nonequilibrium
steady states might provide a hint to develop nonequilibrium
statistical mechanics.

With regard to the large deviation functionals in nonequi-
librium steady states, we review a few works. First, a large
deviation functional of density fluctuations is exactly derived
for nonequilibrium lattice gases [4,5]. This functional is non-
local in contrast to equilibrium cases, and the local part takes
the same form as the equilibrium form. The latter property
seems to be specific to the model, which is sufficiently
simple to solve. Indeed, the local part of the density fluctua-
tions in a driven lattice gas is strongly influenced by an ex-
ternally driven force [2]. However, even in this case, it has
been numerically shown that the local part can be described
by an extended, operationally constructed thermodynamic
function [2]. This result has been proved mathematically for
some systems under a special condition [3].

In this paper, in order to check the generality of the result
in Refs. [2,3], we study a model of interacting Brownian
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particles under nonequilibrium conditions. Here, note that
the motion of Brownian particles is believed to be described
by Langevin equations. This has been confirmed experimen-
tally by measuring the trajectories of Brownian particles with
a high accuracy, which might have become possible by the
recent development of technology for optical instruments
[6-8]. From this fact, the system of Brownian particles is
regarded as an ideal system for studying the fundamental
problems of statistical mechanics, both theoretically and ex-
perimentally.

This paper is organized as follows. In Sec. II, we intro-
duce Langevin equations describing the motion of many
Brownian particles under an external driving force. We also
define the correlation coefficient C and the response coeffi-
cient R that we study. After reviewing briefly, the equality
between C and R (called a fluctuation-response relation), we
conjecture in Sec. III that the fluctuation response relation
can be extended to nonequilibrium systems on the basis of
the consideration of Einstein’s formula on macroscopic fluc-
tuations. In Sec. IV, we report a result of numerical experi-
ments. The final section is devoted to a few remarks.

II. MODEL

We study the system that consists of N Brownian particles
suspended in a two-dimensional solvent of temperature 7.
Letx;, i=1,2,...,N, be the position of the ith particle, where
x;€[0,L]X[0,L] with a periodic boundary conditions. We
express the ath component of x; as x;, with @=1,2. That is,
x;=(x;1,x;). Each particle is driven by an external force
fe;=(f,0) and is subject to a periodic potential U(x;) with
period €. For simplicity, we assume that the periodic poten-
tial is independent of x,. Furthermore, we express the inter-
action between the ith and jth particles by an interaction
potential u(jx;—x|).

The motion of the ith Brownian particle is assumed to be
described by a Langevin equation
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(1)

where vy is a friction constant and R,,(¢) is zero-mean Gauss-
ian white noise that satisfies

(Rio()R;4(t")) =29yT5;8(t = 1'). (2)

Here, the Boltzmann constant is set to unity. The ith and jth
particles interact via the softcore repulsive potential u(r)
given by

ia

K(r—2r.)%2 when r<2r,
u(r) = { (3)

when r > 2r,

where r, is the cutoff radius of the potential. We also assume
a form of the periodic potential U(x,) as

2’7TX1>

U(x)) = Uosm( ¢

4)

It should be noted that without the periodic potential
U(x,), the system is equivalent to an equilibrium system in a
moving frame with velocity f/ . Thus, the periodic potential
is necessary for investigating the nonequilibrium nature. In
the case that f=0, the Langevin equation given in Eq. (1)
satisfies the detailed balance condition with respect to the
canonical distribution; consequently, the stationary distribu-
tion is canonical. On the contrary, in the nonequilibrium
cases where f+# 0, the stationary distribution is not the ca-
nonical distribution because of the lack of the detailed bal-
ance condition.

In this paper, all quantities are converted to dimensionless
forms by setting 7y, €, and T to unity. The values of the
parameters in our model are chosen as follows. First,
r.=2.0, that is, the interaction range of the particle is com-
parable in size to the period of the periodic potential.
Second, in the soft-core repulsive interaction u(r) in Eq. (3),
K=200, 300, 400, and 500. Third, Uy=15.0 and 20.0, and
finally L=30 and N=50. Furthermore, Eq. (1) is solved nu-
merically by using an explicit time integration method with
the time step Ar=1.0X 1072

With these parameters, we first perform preliminary mea-
surements so as to check how far the system is from the
equilibrium. Concretely, we measure the current J as a func-
tion of an external force f, where we calculate J numerically

as
_ _f'" dx 1(1) )

Here, we choose the values of #,, and 7, so that the right-hand
side becomes independent of these values within the numeri-
cal accuracy we imposed. The result is displayed in Fig. 1,
by which we judge that the system with f=20 is in a state far
from the linear-response regime. Thus, in the argument be-
low, we investigate the system with f=20 as an example of
nonequilibrium systems.
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FIG. 1.
average values of J for 10 samples are plotted for several values of
f. The statistical error bars are smaller than the symbols. Inset:
Close-up of the linear response regime. Since the two symbols with
the same value of U, are close to each other, they are displayed in
almost the same position.

Current J in the x; direction as a function of f. The

Now, we study the statistical properties of the density
field

N
plx.1) = 2 8x —x/(1)). (6)
i=1
We consider the Fourier series of the density field

ﬁ(n],nz):fdz.Xfp(X)e_i(sz)(”lxl+”2X2). (7)

Using this, we characterize density fluctuations on large
scales in terms of the correlation coefficient

C ={(Re[5p,]?> (8)

where 5;3("1’,12) is a Fourier series of the deviation
Sp(x)=p(x)—{p(x)) from the average density profile {p(x)),
and Re[- -] represents the real part of a complex number.

According to the fluctuation-response relation, which is
valid in equilibrium cases, C is related to a response coeffi-
cient against a potential perturbation. In the present problem,
we consider the response of Re[ 8pg 1] to the potential

27Tx2>

Vix)=¢ cos( 9)
We note that this potential does not depend on x;, that is, we
apply the perturbation potential transversal to the external
field f in a manner similar to that in Refs. [2,3]. Quantita-
tively, the response coefficient is defined as

(Re[ 5p(0.1) e
R=—lim ———=° (10)
e—0 &
where (---), represents the statistical average in the steady

state under the potential (9).
Here, by the fluctuation-response relation is meant

021108-2



FLUCTUATION-RESPONSE RELATION OF MANY ...

C=TR. (11)

Although it should hold in equilibrium cases, there is no
reason to expect that it also holds in nonequilibrium systems.
Nevertheless, we can measure both C and R even for non-
equilibrium systems. Thus, we can check the relation con-
cretely by numerical experiments.

III. CONJECTURE

Before presenting the results of numerical experiments,
we review the understanding of the relation given in Eq.
(11). In equilibrium cases, the relation can be directly ob-
tained from the canonical distribution; however, here we
present an alternative, phenomenological understanding
based on a macroscopic fluctuation theory in order to con-
sider an extension of the relation.

Let p(x) be a fluctuating density field defined at a macro-
scopic scale. Then, due to the large deviation property, the
stationary distribution is written as

Ps[p(--+)] = exp{- L*I[(- )1}, (12)

where I[p(--+)] is called a large deviation functional. Accord-
ing to the fluctuation theory for systems under equilibrium
conditions, / is determined by thermodynamics. Concretely,
using a free energy density f(T,p), we can write

()] = # J d*x{f(T,p(x)) - £(T.p) + V(x)[p(x) - p1}.
(13)

where p is the average density. This relation is called Ein-
stein’s formula and can be proved within a framework of
equilibrium statistical mechanics. Noting that p, ;) is an ex-
ample of macroscopic density fluctuations, we find that Eq.
(11) is obtained from Egs. (12) and (13).

Equations (12) and (13) are so simple that they are ex-
pected to be extended to those valid in nonequilibrium sys-
tems. More concretely, we conjecture that Eq. (13) holds if
the free energy is extended in a consistent manner.

As one method of constructing the extended free energy,
we can utilize the Maxwell relation between the pressure and
the chemical potential, where the pressure is determined by
the mechanical work required to change the volume of the
system and the chemical potential is defined from the bal-
ance of forces when a small external potential is applied.
Since the Maxwell relation corresponds to an integrability
condition, the free energy is derived as a potential if the
condition is satisfied. Although severe restrictions are re-
quired for nonequilibrium systems to construct the thermo-
dynamics [3], a successful example of the construction of
thermodynamics has been presented for driven lattice gases
with focusing on the transversal direction to the driving force
[2,3]. Since the present model has common features with
driven lattice gases, we expect that the thermodynamics can
also be constructed for our model in a manner similar to that
for driven lattice gases. With this expectation, we conjecture
the validity of Eq. (11) for the system we study. Note that Eq.
(11) can be checked independently of the question whether
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FIG. 2. Average values of (Re[ 85 1)]). over 100 samples are
plotted as a function of . Uy=15 and K=200. The statistical error
bars are smaller than the symbols.

or not thermodynamic functions can be constructed for our
model.

IV. MEASUREMENT AND RESULT

Before measuring C and R, we estimate the relaxation
time 7, for the density field. This estimation is necessary for
the accurate determination of statistical averages by numeri-
cal experiments. Since perturbation effects of the potential
V(x) can be neglected, we estimate 7, only for the systems
without this potential. Initially, we prepare an inhomoge-
neous particle configuration; as an example, all particles are
placed on the sites of a hexagonal lattice with the lattice
interval 2r.. Then, we observe a diffusion phenomenon of
the density field by solving Eq. (1) numerically. Because we
found that the diffusion in the x; direction is slower than that
in the x, direction, we measure only the time dependence of
P1.0)(1). Repeating this procedure 30 times, we estimate the
statistical average of [p(;)(r)]. We then obtain a fitting
15(1.0)(0)|=P(1.0)(0)[e™"™. We found that the K dependence of
Tp is small and that 7 is a decreasing function of f when the
other parameters are fixed. From these observations, we es-
timate 7, for the system with U,, K, and f by measuring
for the system with f=0, K=200, and V(x)=0.

Using 7, evaluated above, we estimate a statistical aver-
age (A), using a time average

W=t o, (149

0

where we chose the values of 7, and 7 as those more than 40
times of the relaxation time 7, for the density field. We now
measure R in Eq. (10) for all the values of U, and K (men-
tioned previously) both under the equilibrium condition f
=0 and the nonequilibrium condition f=20. By measuring
(Re[ 8p(o.1)]). for several values of €, we estimate the regime
where it linearly depends on e. The slope in this region
yields R. As one example, in Fig. 2, (Re[Jp( )] is dis-
played for Uy=15 and K=200: R is evaluated as 5.51 +=0.01
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FIG. 3. C vs TR for several values of U,K, and f. The condi-
tions corresponding to the symbols are explained in the figure.

for the nonequilibrium case (f=20), while it is 4.64 +0.03
for the equilibrium case.

Next, we measure C={(Re[ 8p(g1)])%), for the same values
of the parameters. We find that for f=20, the value of C
shows clear deviation from the equilibrium value. This sug-
gests that the stationary distribution of p in the nonequilib-
rium case is not close to the equilibrium distribution.

From the two independent measurements of R and C, we
can check the fluctuation-response relation C=TR. The result
is summarized in Fig. 3. This suggests that the relation given
in Eq. (11) holds even in the nonequilibrium steady states to
a similar extent as that in the equilibrium states.

Here, we present a remark on the systematic deviation
from the equality in Fig. 3. Let us recall that the validity of
the equality given in Eq. (11) can be proved mathematically
in equilibrium cases. Therefore, each point in Fig. 3 should
exist on the solid line within the statistical error bar at least
for the equilibrium cases. We conjecture that the slight but
systematic deviation from the solid line in Fig. 3 is caused by
numerical inaccuracy associated with a choice of the value of
At. In order to check it further, we measured how the devia-
tion depends on the time step At in our numerical calcula-
tion. As shown in Fig. 4, C/(RT) approaches 1 in the limit
Ar—0. Thus, we expect that in both equilibrium and non-
equilibrium cases, the fluctuation-response relation holds
with a higher accuracy if we perform numerical experiments
with a smaller Ar.

V. CONCLUDING REMARKS

Before concluding this paper, we present two remarks.
First, let us notice that the system we study is a typical ex-
ample of the so-called driven diffusive system [10-12]. It has
been believed that in such a system the equal-time spatial
correlation function generally exhibits a power-law decay of
the type r~¢ for a large distance r, where d is the spatial
dimension of the system [13,14]. This power-low decay is
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FIG. 4. (C—TR)/TR as a function of the time step Az. Uy=15
and K=200.

called the long-range correlation. In fact, it has been proved
for the model given in Eq. (1) that this type of long-range
correlation appears when the interaction length between two
particles is sufficiently larger than the period € [15]. How-
ever, such a nonlocal behavior of density fluctuations was
not observed in our numerical experiments. A plausible ex-
planation for this apparent inconsistency might be that the
system size we study is much smaller than that at which the
long-range correlation can be observed, though the system
size is so large that thermodynamic fluctuations can be ar-
gued. Further studies will be necessary in order to gain a
clearer understanding.

As the second remark, we address an example of labora-
tory experimental systems related to our study and consider
the possibility of observing our simulation results experi-
mentally. First, since a periodic potential with a period of
6 wm can be designed by using an optical instrument [16],
let us assume that €=1 corresponds to 6 um. Then r.=2.0
and L=30 correspond to 12.0 and 180 wum, respectively.
Here, the cutoff radius r. may be interpreted as an interaction
range such as the Debye screening length of the screened
Coulomb potential. According to Ref. [17], such a long
screening length can be realized experimentally. Note that
the core radius of the particle is of the order of micrometers.
Next, in order to realize the periodic boundary conditions in
the direction of the external force, it might be a good method
to place all the particles under a rotating optical tweezer with

FIG. 5. Schematic figure of a driven diffusive system under
periodic boundary conditions.
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a velocity v [9]. Indeed, by observing the system in the mov-
ing frame v, we can confirm that the spatially homogeneous
force f=7yv is produced with periodic boundary conditions
(see Fig. 5). We expect that such an implementation is pos-
sible due to the recent development of the optical technology
(8]

In conclusion, we have demonstrated that the fluctuation-
response relation given in Eq. (11) is plausible for many
Brownian particles under an external driving force when we
focus on a direction transversal to the driving force. If this
relation is valid for any average density, one can obtain a
formula that relates the intensity of density fluctuations in the
transversal direction to the derivative of a chemical potential
with respect to the density [2]. Then, by measuring the work
required to change the system size in the transversal direc-
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tion, one may confirm the Maxwell relation, which ensures
the existence of a thermodynamic function extended to non-
equilibrium steady states [2,3]. In this manner, we will con-
firm Einstein’s formula for the system we study. This pro-
vides a realistic and nontrivial example for a framework of
steady-state thermodynamics. These researches are left for
the future work.
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